
El Adel Taoufik
IT 363
CRN 18093

Agile and waterfall

When it comes to larger scale systems, developing effective and working

software has indeed been a challenge. Surprisingly, and according to the 2015

CHAOS report, more than 52% of all size projects either fail or are challenged

(Standish Group 7). The causes of the failures are organizational and not technical.

Taking adequate approaches and using the most effective methods while

developing software are keywords for success. In this paper, I will conduct a

comparison between agile and waterfall, by describing the principles of each

methodology, stating their advantages and disadvantages, and propose few

suggestions to address their challenges.

Regardless of what methodology is used to develop a system, there is a

systematic cycle that the development process must take. This cycle is referred to

as the systems development life cycle (SDLC) and is defined as the process of

determining how an information system (IS) can support business needs, designing

the system, building it, and delivering it to users (Dennis, et al. 5). The SDLC adheres

to fundamental phases that are essential for developers, such as planning, analysis,

design, and implementation. These phases proceed in a logical path, and each one

of them consists of a series of steps. Different projects may give more importance

to particular parts of the SDLC or approach them in different ways. However, all

system developments have elements of those four phases.

Waterfall is a traditional SDLC model. According to Wikipedia, “the traditional

methodology or waterfall is a sequential development approach, in which

development is seen as flowing steadily downwards through several phases”. It was

proposed by Winston Royce in 1970 and it emphasizes a structured progression

that is linear between defined phases. Each phase relies on the complacency of the

previous phase and has to be documented with deliverables. The first phase is the

requirement analysis where the system and software requirements are gathered

through interviews, group workshops, or questionnaires. At this phase, the

purpose, the users, and the environment of the system are all defined. The second

phase is the design stage that establishes how the system will operate in terms of

infrastructure; the user interface; the specific programs, databases, and files.

Developing architectural and strategical designs determine the feasibility of the

project. Next phase is the implementation, also known as the coding phase of

software development. At this stage, ideas are converted into tangible source code

using programming languages and tools. The designed models are tested to ensure

the correct output is received. The fourth phase is the System Integration and

Testing. At this stage, heavy and iterative testing gets performed. Each application is

tested and integrated with all other modules with different functionality before the

entire system is tested. The final phase is the system deployment and maintenance.

At this stage, the software is released at the client’s end, then routine maintenance

is carried out.

The main two advantages of the waterfall approach are that the phases are

completed one at a time and are controlled with a timeline. Tasks are easier to

manage due to the rigidity of the model. Minimal management is required because

the end goal and deliverables get established and documented at the beginning. It

works well for smaller projects where requirements are clearly understood.

Waterfall model is most appropriate for short projects that have no ambiguous

requirements and are well documented, clear, and fixed. It also helps when the

technology is understood and is not dynamic.

The fact that any tangible output isn’t produced until late in the waterfall

cycle, causes a lack of flexibility in the model. Once a phase has completed, it gets

extremely difficult, time and money wise, to accommodate unexpected changes or

revisions. The lack of client/developers’ interaction, and the emphasis on

documentation that consumes a great deal of time from developers all manifest as

disadvantages to the model. These drawbacks can hinder the success of projects

and particularly the bigger and more complex ones.

The issues discussed above could be addressed by focusing more on working

software rather than following plans or wasting too much time on documentations.

More interactions with the customer before moving into the implementation phase

would provide a clearer and updated picture of the requirements.

During the 80’s, and as software was used more as a solution to more

complex projects, a need for more flexible software development processes was

arising. The low rate of project success and the lengthy time it took to produce

working software using traditional methods have set up a ground to introduce new

iterative models known as agile methods. Agile is both a philosophy and an

umbrella term for a set of frameworks and approaches that share certain common

characteristics. Lapham has defined agile as “An iterative and incremental

(evolutionary) approach to software development which is per- formed in a highly

collaborative manner by self-organizing teams within an effective governance

framework with “just enough” ceremony that produces high quality software in a

cost effective and timely manner which meets the changing needs of its

stakeholders”(16).

Agile models include Scrum, Extreme Programming (XP), Feature-Driven

Development (FDD), Dynamic System Development, Adaptive Software

Development (ASD) and more. All these models share the same core practices and

principles that value individuals and interactions over processes and tools, working

software over excessive documentation, welcoming change over sticking to scripts,

customer collaboration over contract negotiation.

In 2001, a group of 17 software developers and methodologists met in Utah

and developed what is known as The Agile manifesto. This declaration sums up the

core values of agile in twelve principles. 1 Customer satisfaction by early and

continuous delivery of useful software. Unlike the waterfall model, a prototype of

the working software is continuously delivered to the customer for testing and

feedback to not only ensure the fulfilment of the established requirement but to

also accommodate any unexpected changes. 2 Frequent delivery (weeks rather

than months). Delivering working features provides immediate value to the

customer which contributes to the success of the project. 3 Close, daily cooperation

between business representants and developers. This involves keeping minimal

requirements and documentation and focusing more on daily interactions between

developers and business people to keep all the members of the project on the

same page. 4 Face-to-face conversation is the best form of communication. The

purpose behind this principle is to unleash the power of face-to-face

communication. Practices such as daily stand-up meeting, and co-located teams

help overcome obstacles and improve productivity. 5 Welcome changing

requirements, even late in development. The responsiveness to change allow the

costumer to keep their competitive advantage in face of emerging threats or

opportunities. 6 Projects are built around motivated individuals, who should be

trusted. The project is more likely to succeed if the developers are motivated and

are provided with a productive environment with minimal micromanaging where

everyone’s leadership is a contributing factor to the success of the project. 7 Self-

organized team. An agile team is not only responsible for writing code, they self-

organize all aspects of software development, from meeting with the client to

gather requirements to organizing their work. Agile methods empower people to

allow them to produce at their best. 8 Sustainable development. Creativity and

dedication require the team members to maintain a healthy work-life balance by

setting a ceiling of 40 hours of work a week to avoid burnout or exhaustion. This

enables developers to maintain a constant pace indefinitely. 9 Continuous attention

to technical excellence and good design. The right skills and good design ensure the

team can maintain the pace, constantly improve the product, and sustain change.

10 Simplicity. To develop just enough to get the job done at the time being. 11

Continuous improvement. This is achieved through retrospective meetings where

progress is shared, impediments are discussed, and behavioral adjustments are set

in order to improve the process. 12 Working software is the primary measure of

progress. This principle has remedied some deficiencies of the waterfall model

where the goal has deviated bureaucratically from focusing on working software to

documentation and protocols. Just enough documentation, but essentially working

software is what creates value for the customer ("12 Agile Manifesto Principles

Simply Explained").

As stated through the core principals of agile, the main advantage of this

method is the adaptiveness to recurring changes. It is worth noting that the cost of

addressing change has decreased drastically. Customer satisfaction is much higher

and so is the project success rate.

Agile methods submerge few challenges that can surface as disadvantages.

The minimization of documentation can hinder new team members to get up to

speed. Agile demands more time and energy from everyone because developers

must interact constantly with each other and with customers. The practice of daily

meetings or the interaction with the client depend on the availability of each party

which sometimes is just unfeasible especially when the members are not located in

the same physical space. The unpredictability aspect does not allow a clear figure of

the cost of the project as a whole.

These issues can be addressed by taking advantage of new innovations and

techniques. For instance, work management software can be a great asset so that

anyone can have a visible access to the set goals versus progress, and for

developers to address the challenge of documentation. Videoconferencing,

webcams, and collaboration tools can be used as alternatives when circumstances

hinder face-to-face communication. On another note, teams that consists of more

than 10 members are not as efficient and will be affected by the law of diminishing

return. Therefore, forming teams between 3 to 9 persons would ensure efficiency

of communication and best productivity.

To conclude, many methodologists suggest that organizations should adopt

either agile or waterfall depending on the size of the project, the resources on

hand, the level of expertise of the developers, and how clear are the requirements.

If the requirements have potential for change which is often the case nowadays,

then agile is the way to go. If the client has a documentation intensive policy and

must have the best estimate of the costs before starting the project, then waterfall

should be considered. However, and according to statistical evidence, agile has

proven to be more efficient and more successful than waterfall; hence it is fair to

say that agile is indeed a higher and more powerful method than the outdated

waterfall.

References

• The Standish Group,

www.standishgroup.com/sample_research_files/CHAOSReport2015-Final.pdf

• Dennis, Alan, et al. Systems Analysis and Design. 5th ed., John Wiley &

Sons, 2012.

• Lapham, Mary Ann., Williams, Ray., Hammons, Charles (Bud)., Burton, Daniel.,

& Schenker, Alfred. 2010. Considerations for Using Agile in DoD Acquisition

(Technical Report CMU/SEI-2010-TN-002). Pittsburgh: Software Engineering

Institute, Carnegie Mellon University. http://resources.sei.cmu.edu/library/asset-

view.cfm?AssetID=9273

• "The 12 Agile Manifesto Principles Simply Explained." LinkedIn,

www.linkedin.com/pulse/12-agile-manifesto-principles-simply-explained-

jacob-aliet-ondiek.

